Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 629-639, 2016.
Article in English | WPRIM | ID: wpr-728267

ABSTRACT

The present study was designed to investigate the characteristics of gintonin, one of components isolated from Korean Ginseng on secretion of catecholamines (CA) from the isolated perfused model of rat adrenal gland and to clarify its mechanism of action. Gintonin (1 to 30 µg/ml), perfused into an adrenal vein, markedly increased the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. The gintonin-evoked CA secretion was greatly inhibited in the presence of chlorisondamine (1 µM, an autonomic ganglionic bloker), pirenzepine (2 µM, a muscarinic M₁ receptor antagonist), Ki14625 (10 µM, an LPA₁/₃ receptor antagonist), amiloride (1 mM, an inhibitor of Na⁺/Ca²⁺ exchanger), a nicardipine (1 µM, a voltage-dependent Ca²⁺ channel blocker), TMB-8 (1 µM, an intracellular Ca²⁺ antagonist), and perfusion of Ca²⁺-free Krebs solution with 5mM EGTA (a Ca²⁺chelater), while was not affected by sodium nitroprusside (100 µM, a nitrosovasodialtor). Interestingly, LPA (0.3~3 µM, an LPA receptor agonist) also dose-dependently enhanced the CA secretion from the adrenal medulla, but this facilitatory effect of LPA was greatly inhibited in the presence of Ki 14625 (10 µM). Moreover, acetylcholine (AC)-evoked CA secretion was greatly potentiated during the perfusion of gintonin (3 µg/ml). Taken together, these results demonstrate the first evidence that gintonin increases the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. This facilitatory effect of gintonin seems to be associated with activation of LPA- and cholinergic-receptors, which are relevant to the cytoplasmic Ca²⁺ increase by stimulation of the Ca²⁺ influx as well as by the inhibition of Ca²⁺ uptake into the cytoplasmic Ca²⁺ stores, without the increased nitric oxide (NO). Based on these results, it is thought that gintonin, one of ginseng components, can elevate the CA secretion from adrenal medulla by regulating the Ca²⁺ mobilization for exocytosis, suggesting facilitation of cardiovascular system. Also, these findings show that gintonin might be at least one of ginseng-induced hypertensive components.


Subject(s)
Animals , Rats , Acetylcholine , Adrenal Glands , Adrenal Medulla , Amiloride , Cardiovascular System , Catecholamines , Chlorisondamine , Cytoplasm , Egtazic Acid , Exocytosis , Ganglia, Autonomic , Nicardipine , Nitric Oxide , Nitroprusside , Panax , Perfusion , Pirenzepine , Veins
2.
The Korean Journal of Physiology and Pharmacology ; : 431-439, 2014.
Article in English | WPRIM | ID: wpr-727703

ABSTRACT

The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 (3~30 microM), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 (10 microM) also time-dependently inhibited the CA secretion evoked by DMPP (100 microM, a selective neuronal nicotinic receptor agonist) and high K+ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 (50 microg/mL), the secretory responses of CA evoked by veratridine (a selective Na+ channel activator (50 microM), Bay-K-8644 (an L-type dihydropyridine Ca2+ channel activator, 10 microM), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 microM) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 (10 microM) and L-NAME (an inhibitor of NO synthase, 30 microM), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 (10 microM) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of Ca2+ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of Ca2+ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.


Subject(s)
Animals , Rats , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Medulla , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Membranes , Neurons , NG-Nitroarginine Methyl Ester , Nitric Oxide Synthase , Receptors, Nicotinic , Veins , Veratridine
3.
Journal of the Korean Society of Hypertension ; : 51-67, 2014.
Article in English | WPRIM | ID: wpr-35502

ABSTRACT

BACKGROUND: The present study was attempted to compare enalapril, an angiotensin-converting enzyme inhibitor with losartan an angiotensin II (Ang II) receptor blocker in the inhibitory effects on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland. METHODS: The adrenal gland was isolated and perfused with Krebs-bicarbonate. CA was measured directly by using the fluorospectrophotometer. RESULTS: Both enalapril and losartan during perfusion into an adrenal vein for 90 minutes inhibited the CA release evoked by acetylcholine (ACh), 1.1-dimethyl-4-phenyl piperazinium (DMPP, a selective Nn agonist), high K+ (a direct membrane-depolarizer), 3-(m-chloro-phenyl-carbamoyl-oxy-2-butynyl-trimethyl ammonium (McN-A-343, a selective M1 agonist), and Ang II in a time-dependent manner. Also, in the presence of enalapril or losartan, the CA release evoked by veratridine (an activator of voltage-dependent Na+ channels), 6-dimethyl-3-nitro-4-(2-trifluoromethyl-phenyl)-pyridine-5-carboxylate (BAY-K-8644, an L-type Ca2+ channel activator), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor) were significantly reduced. Based on the same concentration of enalapril and losartan, for the CA release evoked by ACh, high K+, DMPP, McN-A-343, Ang II, veratridine, BAY-K-8644, and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: losartan > enalapril. In the simultaneous presence of enalapril and losartan, ACh-evoked CA secretion was more strongly inhibited compared with that of enalapril- or losartan-treated alone. CONCLUSIONS: Collectively, these results demonstrate that both enalapril and losartan inhibit the CA secretion evoked by activation of both cholinergic and Ang II type-1 receptors stimulation in the perfused rat adrenal medulla. When these two drugs were used in combination, their effects were enhanced, which may also be of clinical benefit. Based on concentration used in this study, the inhibitory effect of losartan on the CA secretion seems to be more potent than that of enalapril.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Acetylcholine , Adrenal Glands , Adrenal Medulla , Ammonium Compounds , Angiotensin II , Catecholamines , Cytoplasm , Dimethylphenylpiperazinium Iodide , Enalapril , Losartan , Perfusion , Veins , Veratridine
4.
Journal of the Korean Society of Hypertension ; : 23-38, 2013.
Article in English | WPRIM | ID: wpr-90655

ABSTRACT

BACKGROUND: The aim of this study was to examine whether PD 123319 (an angiotensin II type 2 [AT2] receptor antagonist) can influence the release of catecholamines (CA) from the perfused model of the rat adrenal medulla. METHODS: The adrenal gland was isolated by the modification of Wakade method, and perfused with normal Krebs-bicarbonate solution. The content of CA was measured using the fluorospectrophotometer. RESULTS: During perfusion of PD 123319 (range, 5 to 50 nM) into an adrenal vein for 90 minutes the CA secretory responses evoked by acetylcholine (ACh), high K+, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), and McN-A-343 was dose- and time-dependently inhibited. Furthermore, loading with PD 123319 for 90 minutes also markedly inhibited the CA secretory responses evoked by 4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644), cyclopiazonic acid, veratridine, and angiotensin II (Ang II). PD 123319 did not affect basal CA output. Simultaneous perfusion of PD 123319 and CGP 42112 perfused into an adrenal vein for 90 minutes rather more potently inhibited the CA seretory responses evoked by Ach, high K+, DMPP, Bay-K-8644, veratridine, and Ang II compared to the inhibitory effect by PD123319-treated alone. CONCLUSIONS: Taken together, these results show that PD 123319 inhibits the CA secretion evoked by both cholinergic and Ang II receptor stimulation from the perfused rat adrenal medulla. This inhibitory effect of PD 123319 seems to be exerted by blocking the influx of both Na+ and Ca2+ through their voltage-dependent channels into the rat adrenomedullary chromaffin cells as well as by reducing the Ca2+ release from its cytoplasmic calcium store, which may be relevant to AT2 receptor blockade. Based on these present data, it is thought that PD 123319 has different activity from previously known AT2 antagonist activity in the perfused adrenal medulla, and that AT2 receptors may be involved in the rat adrenomedullary CA secretion.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Acetylcholine , Adrenal Glands , Adrenal Medulla , Angiotensin II , Angiotensin II Type 2 Receptor Blockers , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Imidazoles , Indoles , Oligopeptides , Perfusion , Pyridines , Veins , Veratridine
5.
The Korean Journal of Physiology and Pharmacology ; : 99-109, 2013.
Article in English | WPRIM | ID: wpr-727483

ABSTRACT

The aim of this study was to determine whether fimasartan, a newly developed AT1 receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 microM) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM, a direct membrane depolarizer), DMPP (100 microM) and McN-A-343 (100 microM). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 microM), the CA secretory responses evoked by Bay-K-8644 (10 microM, an activator of L-type Ca2+ channels), cyclopiazonic acid (10 microM, an inhibitor of cytoplasmic Ca(2+)-ATPase), and veratridine (100 microM, an activator of Na+ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 microM) and L-NAME (30 microM, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high K+, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 microM) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 microM). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both Na+ and Ca2+ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the Ca2+ release from the cytoplasmic calcium store, which is relevant to AT1 receptor blockade without NO release.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Angiotensin II , Biphenyl Compounds , Calcium , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Indoles , Ion Channels , Membranes , NG-Nitroarginine Methyl Ester , Pyrimidines , Rats, Inbred SHR , Tetrazoles , Veins , Veratridine
6.
The Korean Journal of Physiology and Pharmacology ; : 241-248, 2010.
Article in English | WPRIM | ID: wpr-727793

ABSTRACT

The present sutdy aimed to determine whether olmesartan, an angiotensin II (Ang II) type 1 (AT1) receptor blocker, can influence the CA release from the isolated perfused model of the rat adrenal medulla. Olmesartan (5~50 micrometer) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM, a direct membrane-depolarizer), DMPP (100 micrometer) and McN-A-343 (100 micrometer). Olmesartan did not affect basal CA secretion. Also, in adrenal glands loaded with olmesartan (15 micrometer), the CA secretory responses evoked by Bay-K-8644 (10 micrometer, an activator of voltage-dependent L-type Ca2+ channels), cyclopiazonic acid (10 micrometer, an inhibitor of cytoplasmic Ca2+ -ATPase), veratridine (100 micrometer, an activator of voltage-dependent Na+ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150~300 micrometer), olmesartan rather enhanced the ACh-evoked CA secretion. Taken together, these results show that olmesartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by direct membrane depolarization from the rat adrenal medulla, but at high concentrations it rather potentiates the ACh-evoked CA secretion. It seems that olmesartan has a dual action, acting as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of olmesartan may be mediated by blocking the influx of both Na+ and Ca2+ into the rat adrenomedullary chromaffin cells as well as by inhibiting the Ca2+ release from the cytoplasmic calcium store, which is thought to be relevant to the AT1 receptor blockade, in addition to its enhancement on the CA secreton.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Angiotensin II , Calcium , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Imidazoles , Indoles , Membranes , Receptors, Nicotinic , Tetrazoles , Veins , Veratridine
7.
The Korean Journal of Physiology and Pharmacology ; : 229-239, 2009.
Article in English | WPRIM | ID: wpr-728730

ABSTRACT

The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3~3 microgram/ml) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, 100 micrometer) and McN-A-343 (a selective muscarinic M1 receptor agonist, 100 micrometer). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 microgram/ml), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine Ca2+ channel activator, 10 microgram), cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 microgram) and veratridine (an activator of voltage-dependent Na+ channels, 10 microgram) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 microgram/ml) plus L-NAME (a selective inhibitor of NO synthase, 30 micrometer), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 microgram/ml) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of Ca2+ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Medulla , Calcium , Catecholamines , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , Neurons , NG-Nitroarginine Methyl Ester , Nitric Oxide , Nitric Oxide Synthase , Receptor, Muscarinic M1 , Receptors, Cholinergic , Sodium , Veins , Veratridine , Wine
8.
The Korean Journal of Physiology and Pharmacology ; : 517-526, 2009.
Article in English | WPRIM | ID: wpr-727349

ABSTRACT

The present study was attempted to investigate whether polyphenolic compounds isolated from wine, which is brewed from Rubus coreanum Miquel (PCRC), may affect the release of catecholamines (CA) from the isolated perfused adrenal medulla of the spontaneously hypertensive rats (SHRs), and to establish its mechanism of action. PCRC (20~180 microgram/ml) perfused into an adrenal vein for 90 min relatively dose-dependently inhibited the CA secretory responses to ACh (5.32 mM), high K+ (56 mM), DMPP (100 micrometer) and McN-A-343 (100 micrometer). PCRC itself did not affect basal CA secretion (data not shown). Also, in the presence of PCRC (60 microgram/ml), the CA secretory responses to veratridine (a selective Na+ channel activator (10 micrometer), Bay-K-8644 (a L-type dihydropyridine Ca2+ channel activator, 10 micrometer), and cyclopiazonic acid (a cytoplasmic Ca2+ -ATPase inhibitor, 10 micrometer) were significantly reduced, respectively. In the simultaneous presence of PCRC (60 microgram/ml) and L-NAME (an inhibitor of NO synthase, 30 micrometer), the inhibitory responses of PCRC on the CA secretion evoked by ACh, high K+, DMPP, and Bay-K-8644 were considerably recovered to the extent of the corresponding control secretion compared with that of PCRC-treatment alone. The level of NO released from adrenal medulla after the treatment of PCRC (60 microgram/ml) was greatly elevated compared with the corresponding basal level. Taken together, these results demonstrate that PCRC inhibits the CA secretion from the isolated perfused adrenal medulla of the SHRs evoked by stimulation of cholinergic receptors as well as by direct membrane-depolarization. It seems that this inhibitory effect of PCRC is mediated by blocking the influx of calcium and sodium into the adrenal medullary chromaffin cells of the SHRs as well as by inhibition of Ca2+ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of NO synthase.


Subject(s)
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Medulla , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , NG-Nitroarginine Methyl Ester , Nitric Oxide , Nitric Oxide Synthase , Polyphenols , Rats, Inbred SHR , Receptors, Cholinergic , Sodium , Veins , Veratridine , Wine
9.
The Korean Journal of Physiology and Pharmacology ; : 101-109, 2008.
Article in English | WPRIM | ID: wpr-728600

ABSTRACT

The aim of the present study was to examine the effects of ketamine, a dissociative anesthetics, on secretion of catecholamines (CA) secretion evoked by cholinergic stimulation from the perfused model of the isolated rat adrenal gland, and to establish its mechanism of action, and to compare ketamine effect with that of thiopental sodium, which is one of intravenous barbiturate anesthetics. Ketamine (30~300 micrometer), perfused into an adrenal vein for 60 min, dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (a direct membrane- depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, 100 micrometer) and McN-A-343 (a selective muscarinic M1 receptor agonist, 100 micrometer). Also, in the presence of ketamine (100 micrometer), the CA secretory responses evoked by veratridine (a voltage-dependent Na+ channel activator, 100 micrometer), Bay-K-8644 (an L-type dihydropyridine Ca2+ channel activator, 10 micrometer), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 micrometer) were significantly reduced, respectively. Interestingly, thiopental sodium (100 micrometer) also caused the inhibitory effects on the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, veratridine, Bay-K-8644, and cyclopiazonic acid. Collectively, these experimental results demonstrate that ketamine inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effect of ketamine is mediated by blocking the influx of both Ca2+ and Na+ through voltage-dependent Ca2+ and Na+ channels into the rat adrenal medullary chromaffin cells as well as by inhibiting Ca2+ release from the cytoplasmic calcium store, which are relevant to the blockade of cholinergic receptors. It is also thought that, on the basis of concentrations, ketamine causes similar inhibitory effect with thiopental in the CA secretion from the perfused rat adrenal medulla.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Anesthetics , Anesthetics, Dissociative , Barbiturates , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , Ketamine , Membranes , Neurons , Receptor, Muscarinic M1 , Receptors, Cholinergic , Thiopental , Veins , Veratridine
10.
The Korean Journal of Physiology and Pharmacology ; : 155-164, 2008.
Article in English | WPRIM | ID: wpr-728592

ABSTRACT

Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10~100micrometer) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic Nn receptor agonist, 100micrometer) and McN-A-343 (a selective muscarinic M1 receptor agonist, 100micrometer) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30micrometer), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent Na+ channels, 100micrometer), Bay-K-8644 (a L-type dihydropyridine Ca2+ channel activator, 10micrometer), and cyclopiazonic acid (a cytoplasmic Ca2+ -ATPase inhibitor, 10micrometer) were significantly reduced. In the simultaneous presence of resveratrol (30micrometer) and L-NAME (an inhibitor of NO synthase, 30micrometer), the CA secretory evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through Na+ and Ca2+ channels into the adrenomedullary cells as well as by blocking the release of Ca2+ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Calcium , Catecholamines , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , Ions , Neurons , NG-Nitroarginine Methyl Ester , Nitric Oxide , Nitric Oxide Synthase , Perfusion , Receptor, Muscarinic M1 , Receptors, Cholinergic , Receptors, Nicotinic , Stilbenes , Veins , Veratridine
11.
The Korean Journal of Physiology and Pharmacology ; : 13-23, 2008.
Article in English | WPRIM | ID: wpr-728194

ABSTRACT

The aim of the present study was designed to establish comparatively the inhibitory effects of D1-like and D2-like dopaminergic receptor agonists, SKF81297 and R(-)-TNPA on the release of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. SKF81297 (30 micrometer) and R-(-)-TNPA (30 micrometer) perfused into an adrenal vein for 60 min, produced great inhibition in the CA secretory responses evoked by ACh (5.32x10(-3) M), DMPP (10(-4) M), McN-A-343 (10(-4) M), high K+ (5.6x10(-2) M), Bay-K-8644 (10 micrometer), and cyclopiazonic acid (10 micrometer), respectively. For the release of CA evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: SKF81297>R-(-)-TNPA. However, R(+)-SCH23390, a selectve D1-like dopaminergic receptor antagonist, and S(-)-raclopride, a selectve D2-like dopaminergic receptor antagonist, enhanced the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid only for 0~4 min. The rank order for the enhancement of CA release evoked by high K+, McN-A-343 and cyclopiazonic acid was R(+)-SCH23390>S(-)-raclopride. Also, the rank order for ACh, DMPP and Bay-K-8644 was S(-)-raclopride > R(+)-SCH23390. Taken together, these results demonstrate that both SKF81297 and R-(-)-TNPA inhibit the CA release evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland without affecting the basal release, respectively, but both R(+)-SCH23390 and S(-)-raclopride facilitate the CA release evoked by them. It seems likely that the inhibitory effects of SKF81297 and R-(-)-TNPA are mediated by the activation of D1-like and D2-like dopaminergic receptors located on the rat adrenomedullary chromaffin cells, respectively, whereas the facilitatory effects of R(+)-SCH23390 and S(-)-raclopride are mediated by the blockade of D1-like and D2-like dopaminergic receptors, respectively: this action is possibly associated with extra- and intracellular calcium mobilization. Based on these results, it is thought that the presence of dopaminergic D1 receptors may play an important role in regulation of the rat adrenomedullary CA secretion, in addition to well-known dopaminergic D2 receptors.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Benzazepines , Calcium , Catecholamines , Chromaffin Cells , Dimethylphenylpiperazinium Iodide , Indoles , Membranes , Veins
12.
The Korean Journal of Physiology and Pharmacology ; : 197-206, 2007.
Article in English | WPRIM | ID: wpr-728207

ABSTRACT

The aim of the present study was to investigate the effects of 6-chloro-7,8-dihydroxy-1-phenyl-2,3, 4,5-tetrahydro-1H-3-benzazepine (SKF81297), a selective agonist of dopaminergic D1 receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to elucidate the mechanism involved. SKF81297 (10~100microM) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM), DMPP (100microM) and McN-A-343 (100microM). Also, in adrenal glands loaded with SKF81297 (30microM), the CA secretory responses evoked by Bay-K-8644 (10microM), an activator of L-type Ca2+ channels and cyclopiazonic acid (10microM), an inhibitor of cytoplasmic Ca2+-ATPase were also inhibited. However, in the presence of the dopamine D1 receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol (SCH23390, 3microM), which is a selective antagonist of dopaminergic D1 receptor, the inhibitory responses of SKF81297 (30microM) on the CA secretion evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Collectively, these experimental results suggest that SKF81297 inhibits the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization. This inhibitory of SKF81297 seems to be mediated by stimulation of dopaminergic D1 receptors located on the rat adrenomedullary chromaffin cells, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that the presence of the dopaminergic D1 receptors may be involved in regulation of CA release in the rat adrenal medulla.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Membranes , Receptors, Dopamine D1 , Veins
13.
The Korean Journal of Physiology and Pharmacology ; : 273-282, 2006.
Article in English | WPRIM | ID: wpr-727444

ABSTRACT

The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic D2 receptor and S(-)-raclopride, a selective antagonist of dopaminergic D2 receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA (10~100 micrometer) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM), DMPP (100 micrometer) and McN-A-343 (100 micrometer). R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA (30 micrometer), the CA secretory responses evoked by Bay-K-8644 (10 micrometer), an activator of L-type Ca2+ channels and cyclopiazonic acid (10 micrometer), an inhibitor of cytoplasmic Ca2+-ATPase were also inhibited. However, S(-)-raclopride (1~10 micrometer), given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high K+, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride (3.0 micrometer) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNPA (30 micrometer) and S(-)-raclopride (3.0 micrometer), the inhibitory responses of R-(-)-TNPA (30 micrometer) on the CA secretion evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic D2 receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic D2 receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic D2 receptors may be involved in regulation of CA release in the rat adrenal medulla.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Membranes , Perfusion , Veins
14.
The Korean Journal of Physiology and Pharmacology ; : 207-214, 2002.
Article in English | WPRIM | ID: wpr-728288

ABSTRACT

The present study was designed to clarify whether tacrine affects the release of catecholamines (CA) from the isolated perfused model of rat adrenal gland or not and to elucidate the mechanism of its action. Tacrine (3 X 10(-5)~3 X 10(-4) M) perfused into an adrenal vein for 60 min inhibited CA secretory responses evoked by ACh (5.32 X 10(-3) M), DMPP (a selective neuronal nicotinic agonist, 10(-4) M for 2 min) and McN-A-343 (a selective muscarinic M1-agonist, 10(-4) M for 2 min) in relatively dose- and time- dependent manners. However, tacrine failed to affect CA secretion by high K+ (5.6 X 10(-2) M). Tacrine itself at concentrations used in the present experiments did not also affect spontaneous CA output. Furthermore, in the presence of tacrine (10(-4) M), CA secretory responses evoked by Bay-K-8644 (an activator of L-type Ca2+ channels, 10(-4) M), but not by cyclopiazonic acid (an inhibitor of cytoplasmic Ca2+-ATPase, 10(-4) M), was relatively time-dependently attenuated. Also, physostigmine (10(-4) M), given into the adrenal gland for 60 min, depressed CA secretory responses evoked by ACh, McN-A-343 and DMPP while did not affect that evoked by high K+. Collectively, these results obtained from the present study demonstrate that tacrine greatly inhibits CA secretion from the perfused rat adrenal gland evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by direct membrane-depolarization. It is suggested that this inhibitory effect of tacrine may be exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells without Ca2+ release from the cytoplasmic calcium store, that is relevant to the cholinergic blockade. Also, the mode of action between tacrine and physostigmine in rat adrenomedullary CA secretion seems to be similar.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Neurons , Nicotinic Agonists , Physostigmine , Tacrine , Veins
15.
The Korean Journal of Physiology and Pharmacology ; : 215-224, 2002.
Article in English | WPRIM | ID: wpr-728287

ABSTRACT

The present study was undertaken to investigate the effect of doxorubicin (DX) on secretion of catecholamines (CA) evoked by ACh, high K+, DMPP and McN-A-343 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. DX (10(-7)~10(-6) M) perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition of CA secretory responses evoked by ACh (5.32 X 10(-3) M), DMPP (10(-4) M) and McN-A-343 (10(-4) M). However, lower dose of DX did not affect CA secretion by high K+ (5.6 X 10(-2) M), but its higher doses depressed time-dependently CA secretion evoked by high K+. DX itself did also fail to affect basal CA output. In adrenal glands loaded with DX (3 X 10(-7) M), CA secretory responses evoked by Bay-K-8644, an activator of L-type Ca2+ channels and cyclopiazonic acid, an inhibitor of cytoplasmic Ca2+-ATPase were time-dependently inhibited. Furthermore, daunorubicin (3 X 10(-7) M), given into the adrenal gland for 60 min, attenuated CA secretory responses evoked by ACh, high K+, DMPP and McN-A-343. Taken together, these results suggest that DX causes relatively dose- and time-dependent inhibition of CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland. However, lower dose of DX did not affect CA secretion by high K+, and higher doses of DX reduced time-dependently CA secretion of high K+. It is thought that these effects of DX may be mediated by inhibiting both influx of extracellular calcium into the rat adrenomedullary chromaffin cells and intracelluar calcium release from the cytoplasmic store. Also, there was no difference in the mode of action between DX and daunorubicin in rat adrenomedullary CA secretion.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Daunorubicin , Dimethylphenylpiperazinium Iodide , Doxorubicin , Veins
16.
The Korean Journal of Physiology and Pharmacology ; : 149-158, 2000.
Article in English | WPRIM | ID: wpr-727743

ABSTRACT

The present study was attempted to examine the effect of staurosporine (STS) on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal gland and to establish its mechanism of action. The perfusion of STS (3 X 10(-7) ~3 X 10(-8) M) into an adrenal vein for 20 min produced a dose-dependent inhibition in CA secretion evoked by ACh (5.32 X 10(-3) M), high K+ (5.6 X 10(-2) M), DMPP (10(-4) M for 2 min), McN-A-343 (10(-4) M for 2 min), cyclopiazonic acid (10(-5) M for 4 min) and Bay-K-8644 (10(-5) M for 4 min). Also, in the presence of tamoxifen (2 X 10(-6) M), which is known to be a protein kinase inhibitor, CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with STS (10(-7) M) under the presence of phorbol-12,13-dibutyrate (10(-7) M), a specific activator of protein kinases (for 20 min), the inhibitory effect of STS on CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid was greatly recovered to the extent of the control release as compared to those in the presence of STS only. These results demonstrate that STS causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells through preventing activation of protein kinases. Furthermore, these findings also suggest that these STS-sensitive protein kinases play a modulatory role partly in regulating the rat adrenomedullary CA secretion.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Calcium , Catecholamines , Chromaffin Cells , Dimethylphenylpiperazinium Iodide , Membranes , Perfusion , Phorbol 12,13-Dibutyrate , Protein Kinases , Staurosporine , Tamoxifen , Veins
17.
The Korean Journal of Physiology and Pharmacology ; : 339-350, 1999.
Article in English | WPRIM | ID: wpr-728240

ABSTRACT

The present study was attempted to examine the effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of PACAP (10 nM) into an adrenal vein for 60 min produced a great inhibition in CA secretion evoked by ACh (5.32 X 10(-3) M), high K+ (5.6 X 10(-2) M), DMPP (10(-4) M for 2 min), McN-A-343 (10(-4) M for 2 min), cyclopiazonic acid (10(-5) M for 4 min) and Bay-K-8644 (10(-5) M for 4 min). Also, in the presence of neuropeptide (NPY), which is known to be co-localized with norepinephrine in peripheral sympathetic nerves, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with PACAP (10 nM) under the presence of VIP antagonist ((Lys1, Pro2.5, Arg3.4, Tyr6)-VIP (3 micrometer)) for 20 min, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not altered greatly in comparison to the case of PACAP-treatment only. Taken together, these results suggest that PACAP causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Calcium , Chromaffin Cells , Dimethylphenylpiperazinium Iodide , Membranes , Neuropeptides , Norepinephrine , Perfusion , Pituitary Adenylate Cyclase-Activating Polypeptide , Potassium , Veins
18.
The Korean Journal of Physiology and Pharmacology ; : 443-454, 1998.
Article in English | WPRIM | ID: wpr-728695

ABSTRACT

The present study was attempted to investigate the effect of vasoactive intestinal polypeptide (VIP) on secretion of catecholamines (CA) and to establish whether there is the existence of a noncholinergic mechanism in adrenomedullary CA secretion from the isolated perfused rat adrenal gland. The perfusion into an adrenal vein of VIP (3 X 10-6 M) for 5 min or the injection of acetylcholine (ACh, 5.32 X 10-3 M) resulted in great increases in CA secretion. Tachyphylaxis to releasing effect of CA evoked by VIP was not observed by the repeated perfusion. The net increase in adrenal CA secretion evoked by VIP still remained unaffected in the presence of atropine or chlorisondamine. However, the CA release in response to ACh was greatly inhibited by the pretreatment with atropine or chlorisondamine. The releasing effects of CA evoked by either VIP or ACh were depressed by pretreatment with nicardipine, TMB-8, and the perfusion of Ca2+-free medium. Moreover, VIP- as well as ACh-evoked CA secretory responses were markedly inhibited under the presence of (Lys1, Pro2.5, Arg3.4, Tyr6)-VIP or naloxone. CA secretory responses induced by ACh and high K+ (5.6 X 10-2 M) were potentiated by infusion of VIP (3 X 10-6 M for 5 min). Taken together, these experimental results indicate that VIP causes CA release in a fashion of calcium ion-dependence, suggesting strongly that there exists a noncholinergic mechanism that may be involved in the regulation of adrenomedullary CA secretion through VIP receptors in the rat adrenal gland, and that VIP may be the noncholinergic excitatory secretagogue present in the chromaffin cells.


Subject(s)
Animals , Rats , Acetylcholine , Adrenal Glands , Adrenal Medulla , Atropine , Calcium , Catecholamines , Chlorisondamine , Chromaffin Cells , Naloxone , Nicardipine , Perfusion , Receptors, Vasoactive Intestinal Peptide , Tachyphylaxis , Vasoactive Intestinal Peptide , Veins
19.
The Korean Journal of Physiology and Pharmacology ; : 173-184, 1998.
Article in English | WPRIM | ID: wpr-727544

ABSTRACT

The present study was undertaken to examine the influence of glucocorticoids on the secretory responses of catecholamines (CA) evoked by acetylcholine (ACh), DMPP, McN-A-343, excess K+ and Bay-K-8644 from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. The perfusion of the synthetic glucocorticoid dexamethasone (10-100 micrometer) into an adrenal vein for 20 min produced a dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), excess K+ (a membrane-depolarizor 56 mM), DMPP (a selective nicotinic receptor agonist, 100 micrometer for 2 min), McN-A-343 (a muscarinic receptor agonist, 100 micrometer for 4 min), Bay-K-8644 (a calcium channel activator, 10 micrometer for 4 min) and cyclopiazonic acid (a releaser of intracellular Ca2+ 10 micrometer for 4 min). Similarly, the preperfusion of hydrocortisone (30 micrometer) for 20 min also attenuated significantly the secretory responses of CA evoked by nicotinic and muscarinic receptor stimulation as well as membrane-depolarization, Ca2+ channel activation and the release of intracellular Ca2+. Furthermore, even in the presence of betamethasone (30micrometer), CA secretion evoked by ACh, excess K+, DMPP and McN-A-343 was also markedly inhibited. Taken together, the present results suggest that glucocorticoids cause the marked inhibition of CA secretion evoked by both cholinergic nicotinic and muscarinic receptor stimulation from the isolated perfused rat adrenal gland, indicating strongly that this inhibitory effect may be mediated by inhibiting influx of extracellular calcium as well as the release of intracellular calcium in the rat adrenomedullary chromaffin cells.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Acetylcholine , Adrenal Glands , Adrenal Medulla , Betamethasone , Calcium , Calcium Channels , Catecholamines , Chromaffin Cells , Dexamethasone , Dimethylphenylpiperazinium Iodide , Glucocorticoids , Hydrocortisone , Perfusion , Receptors, Muscarinic , Receptors, Nicotinic , Veins
20.
Korean Circulation Journal ; : 1197-1207, 1995.
Article in Korean | WPRIM | ID: wpr-221930

ABSTRACT

BACKGROUND: The influence of gamma-aminobutyric acid(GABA), which is well-known as a major inhibitory neurotransmitter in central nervous system, on secretion of catecholamines(CA) was investigated in the isolated perfused rat adrenal gland. METHODS: Mature male Sprague-Dawley rats were anesthetized with ether. Ther adrenal gland was isolated by the methods f Wakade. A cannula used for perfusion of the adrenal gladn was inserted into the distal end of the renal vein. The adrenal gland, along with ligated blood vessels and the cannula, was carefully removed from the animal and placed on a platform of a leucite chamber. RESULTS: GABA given into an adrenal vein of the rat produced markedly secretion of CA from the adrenal gland. Tachyphylaxis to the relesing effect of CA evoked by GABA was observed. The secretory effect of CA evoked by GABA was attenuated singnificantly by pretreatment with mecamylamine or atropine. Ouabain inhibited greatly the secretory response of GABA. When omitting the external potassium ion, the basal release of CA was increased. During this period GABA no longer revealed the increase in CA release. CA secretion evoked by GABA was blocked significantly by perfusion of calcium-free Krebs solution containing 5mMEGTA for 30-min. Pretreatment with bicuculline or picrotoxin inhibited CA secretion evoked by GABA as well as ACh. ACh-evoked CA release was potentiated by GABA infusion(400ug/30min). CONCLUSION: The experimental findings suggest that GABA causes the secretory effect of CA in a fashion of external calcium and potassium iosn-dependence, and that this releasing effect of CA induced by GABA may be exterted by stimulation of GABAergic A-reccptors located on adrenomedullary chromaffine cell, which is likely associated with cholinergic receptor activation evoked CA secretion.


Subject(s)
Animals , Humans , Male , Rats , Adrenal Glands , Atropine , Bicuculline , Blood Vessels , Calcium , Catheters , Central Nervous System , Ether , gamma-Aminobutyric Acid , Mecamylamine , Neurotransmitter Agents , Ouabain , Perfusion , Picrotoxin , Potassium , Rats, Sprague-Dawley , Renal Veins , Tachyphylaxis , Veins
SELECTION OF CITATIONS
SEARCH DETAIL